Thursday, November 28, 2019

Epsom salts Essay Example

Epsom salts Paper We can see clearly from these graphs that as the concentration increases so does the rate of reaction. From the relatively straight lines of best fit we can tell that the rate of reaction is continuous with each different concentration. Scientific Model: From these results we can tell that as the concentration of H2SO4; when increased in the solution of 20ml H2SO4 and H20 (Sulphuric acid and water -a neutral chemical in this experiment-) the higher the rate of impact between H2SO4 and Mg; and so higher the rate of reaction. Proving the prediction on the basis that the higher the concentration of a reactant is the higher the rate of reaction (Increase in H2SO4 concentration = Increase in the rate of reaction), by literally increasing the ratio of the reactant substance the rate of reaction is increased dramatically and the faster the products are released. Test of scientific model: The proof of this scientific model is seen in the way that the lines of best fit are straight showing that the concentration of a reactant is equally relational to the rate of reaction. We can also prove this by seeing that the higher the concentration of H2SO4 the higher the overall rate of reaction is (see the mean average graph). This shows us that the scientific model is accurate. Evaluations: The results from my experiment were a relative success, although there were some major anomalies, the individual concentration graphs and the mean average graph gave me enough information to come to some sort of a conclusion on whether my chosen factor has a bearing on the rate of reaction of magnesium and sulphuric acid to produce Epsom salts. The evidence I can give this can prove my prediction and the scientific model. We will write a custom essay sample on Epsom salts specifically for you for only $16.38 $13.9/page Order now We will write a custom essay sample on Epsom salts specifically for you FOR ONLY $16.38 $13.9/page Hire Writer We will write a custom essay sample on Epsom salts specifically for you FOR ONLY $16.38 $13.9/page Hire Writer On the whole the experiment was a success and mostly encountered anomalies that although quite large are not on such a large scale to stop me from reaching a good accurate conclusion. The worst anomaly in the whole experiment was on the 40% concentration experiment, although this anomaly can only be seen to its full extent in its individual graph: The large difference between Run-3 and the other runs is vast, this is lightly to be the result of human error like many of the other anomalies, most lightly reason being that the concentration of H2SO4 or the mass of Mg used in that run. This highlights that there is problems with the procedure and the accuracy of me and my groups experiment. The anomalies that are present in the experiment are overall minor but the reasons for there occurrence are relatively small in most cases apart from the result shown in run-3 of the 40% test. The main reasons can be split up into two main categories, procedure failure and equipment failure. I will not highlight the main problems: Procedure failure: 1. Considering that the levels of hydrogen being released where measured by eye via the measuring cylinder, leaving huge space for human error, there could have been some serious cases of misjudgment. This would make the results and the graphs slightly inaccurate. 2. The results may have been written or copied down inaccurately, giving a false set, resulting from minor to severe anomalies. 3. The magnesium may and lightly to of been weighted incorrectly, creating a higher or lower rate of reaction compared to the amount being tested. (this could have been the cause of the large anomalous results in the 40% concentration test) 4. The sulphuric acid was measured out in a rush and some confusion could have been caused and the wrong ration of H2SO4 and H20 may have been put into the measuring cylinder, resulting in anomalies. 5. The measurement of hydrogen might not have been accurate to the time intervals. 6. The measuring cylinder may not have been completely full of water, creating an overall inaccurate run. Equipment Failure: 1. There may have been a very small leak or an opening in stopper or in the side arm tubing, this would cause the results to be inaccurate. 2. The electronic scales may have been giving false measurements but this could also be due to human error or recording of the measurements given by the scales. 3. For the lower concentration (lower rate of reaction) runs. The large measuring cylinder used for collecting the results, may have been to large to get an accurate reading because of such small increases in hydrogen volume, it may have been wiser to use a smaller measuring cylinder for the lower concentrations, but this was only to be discovered after the experiment was completed. Extended investigation: Research: There are a number of ways that I could extend and improve this investigation, the one bellow should generate considerably more accurate results and cut down on the floors in procedure and equipment failure in the tests. This involves removing the large measuring cylinder, and the tub of water and replacing it with a gas syringe. This piece of equipment is made for measuring volumes of gas and so is perfect for such an experiment where we are measuring the amount of gas given off by a reaction. Diagram: The advantages for using this piece of equipment are: 1. The measurements are more accurate and than guesswork by eye. 2. Likely hood of it leakage or incorrect reading reduced. 3. Less equipment is used. (taking away the measuring cylinder with and the tub of water) I would also change the measurements of the chemicals to be moles so we can get accurate calculations and so we can tell if the experiment ran accurately by the amount of produce Hydrogen and MgSO4 are left at the end of the experiment. Revised Method and apparatus list: Apparatus:Â   Goggles Method: Set up apparatus as before BUT instead of preparing water with the upturned measuring cylinder, attach the gas syringe to the clamp stand and secure the end of the side arms delivery tube to it. Then continue the procedure as normal recording the results from the readings on the side of the gas syringe. Diagram: Conclusion: The experiment went well, at the end of the experiment, i am able to conclude that from the results given from the practical and from the research taken that my prediction is accurate. As the concentration of H2SO4 is increased so does the rate of reaction equally until either of the reactants are used up to the point that the concentration (of sulphuric acid) or the surface area (of the Magnisium because of the lack of molecules after most of them have reacted) . The conclusion states the facts originally shown in the prediction and those backed up in the observations in the scientific model after the experiment. The anomalies that occurred did not have any crucial bearing on the experiment as it does not require accuracy to a finite level as long as the results are moderately accurate I can come to a conclusion. 1 Show preview only The above preview is unformatted text This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Sunday, November 24, 2019

INTERNATIONAL WORDS Essays - Culture, Language, Linguistics

INTERNATIONAL WORDS Essays - Culture, Language, Linguistics INTERNATIONAL WORDS As the process of borrowing is mostly connected with the appearance of new notions which the loan words serve to express, it is natural that the borrowing is seldom limited to one language. Words of identical origin that occur in several languages as a result of simultaneous or successive borrowings from one ultimate source are called international words. Expanding global contacts result in the considerable growth of international vocabulary. All languages depend for their changes upon the cultural and social matrix in which they operate and various contacts between nations are part of this matrix reflected in vocabulary. International words play an especially prominent part in various terminological systems including the vocabulary of science, industry and art. The etymological sources of this vocabulary reflect the history of world culture. Thus, for example, the mankind's cultural debt to Italy is reflected in the great number of Italian words connected with architect ure, painting and especially music that are borrowed into most European languages: allegro, andante, aria, arioso, barcarole, baritone (and other names for voices), concert, duet, opera (and other names for pieces of music), piano and many many more. The rate of change in technology, political, social and artistic life has been greatly accelerated in the 20th century and so has the rate of growth of international wordstock . A few examples of comparatively new words due to the progress of science will suffice to illustrate the importance of international vocabulary: algorithm, antenna, antibiotic, automation, bionics, cybernetics, entropy, gene, genetic code, graph, microelectronics, microminiaturisation , quant, quasars, pulsars, ribosome, etc. All these show sufficient likeness in English, French, Russian and several other languages. The international wordstock is also growing due to the influx of exotic borrowed words like anaconda, bungalow, kraal, orang- o utang , sari, etc. These come from many different sources. International words should not be mixed with words of the common Indo-European stock that also comprise a sort of common fund of the European languages. This layer is of great importance for the foreign language teacher not only because many words denoting abstract notions are international but also because he must know the most efficient ways of showing the points of similarity and difference between such words as control : : ; general : : ; industry : : or magazine : : , etc. usually called translator's false friends'. The treatment of international words at English lessons would be one-sided if the teacher did not draw his pupils' attention to the spread of the English vocabulary into other languages. We find numerous English words in the field of sport: football, out, match, tennis, time. A large number of English words are to be found in the vocabulary pertaining to clothes: jersey, pullo ver, sweater, nylon, tweed, etc. Cinema and different forms of entertainment are also a source of many international words of English origin: film, club, cocktail, jazz. At least some of the Russian words borrowed into English and many other languages and thus international should also be mentioned: balalaika, bolshevik , cosmonaut, czar, intelligentsia, Kremlin, mammoth, rouble , sambo, soviet, sputnik, steppe, vodka. To sum up this brief treatment of loan words it is necessary to stress that in studying loan words a linguist cannot be content with establishing the source, the date of penetration, the semantic sphere to which the word belonged and the circumstances of the process of borrowing. All these are very important, but one should also be concerned with the changes the new language system into which the loan word penetrates causes in the word itself, and, on the other hand, look for the changes occasioned by the newcomer in the English vocabulary, when in findi ng its way into the new language it pushed some of its lexical neighbours aside. In the discussion above we have tried to show the importance of the problem of conformity with the patterns typical of the receiving language and its semantic needs.

Thursday, November 21, 2019

Law Enforcement Technology Essay Example | Topics and Well Written Essays - 750 words

Law Enforcement Technology - Essay Example The information technology and electronic gadgets have significantly impacted the performance of policing in states and helped enforce law and order. Chan (2001) asserts that information is stock-in-trade of policing which considerably influences enforcement of law. The ready access to information, especially criminal records becomes vital ingredient in investigating and preventing crimes. The various agencies, including police use sophisticated gadgets to coordinate and track crimes and criminals. Computer based crime mapping has revolutionized policing. GIS or geographical information system facilitates and help create pattern of crime within the defined geographical location so that spatial trend in crime is easily identified. It helps to manipulate and display geographical knowledge in new and exciting ways (Cowen 2001, p. 3). GPS or global positioning system is another important technology that is used for direction and identifying route maps to locate crime or track criminals or suspects. Chicago police was the first to use technology to collaborate with community and enhance mechanisms of controlling crimes. It introduced CAPS or Chicago Alternative police Strategy to solve neighborhood problems. ICAM or Information Collecting for Automated Mapping is its key tool that has 90 days relevant data related to crime hot spots including maps, graphs and details of reported crimes (Skogan & Hartnett, 1996). It is updated and accessible to community for transparent community policing. This has been adopted by other states to improve policing and reducing crime. Real time Computer Aided Detection System is another important tool that helps monitor illegal entry of cross border immigration, drug trafficking etc. Indeed, the geo-mapping helps to analyze and create linkages and patterns of crime for determining the potential risk factors and identification of

Wednesday, November 20, 2019

The meaning of the marine NCO Essay Example | Topics and Well Written Essays - 3500 words

The meaning of the marine NCO - Essay Example War is usually fought by trained personnel who are either expert in ground combat, air combat or water combat. However the USA Marine Corps is a special unit that is a maestro both in ground and water combat. In this sense they might be termed as the amphibians as powerful as a tiger lurking its prey on ground and as vicious as a crocodile waiting silently beneath the water without a hint that its probable prey could have catch. United States of America has a rich and engrossing military history. Over the centuries they have not only protected their home land rather came into rescue for several times to other nations well. The two of the prime example might be the first Great War followed by the second one within a span of quarter of a century. Such aggression and military success by no means qualifies the country as war monger, but war is an evil necessity and at times to restore peace or to save the world from evil dictatorship dedicated to wards military regime instead of fostering democracy; war cannot be avoided. The effort of the USA military can best be classified under these two headings one to restore global peace and the other to tame the evil dictators who came with a dream to rein the entire world through force of military not by the power of love. The USA armed force has several sectors, each dedicated to its own cause and entrusted with their specific responsibilities. The entire armed force of USA might be sub-divided into four parts namely, US Army, US Navy, US Marines and US Air Force (Wisegeek, 2013). The term USA Marine Corps brings peace to the heart of each American people and runs a chilly wave along the spine of all the enemies of United States of America. The first question that hover the mind of a researcher is what was the need for the USA Congress to initiate a new division of armed force? The Marine Corps started as an infantry division within the Navy with a view to protect the ship from any mutiny and

Monday, November 18, 2019

History Essay Example | Topics and Well Written Essays - 750 words - 10

History - Essay Example These letters show how many Americans were affected by the Great Depression, yet it also examines individual experiences and reactions to such experiences.1 2. What are the advantages of using letters as opposed to oral histories or reports by New Deal investigators to learn about the responses of ordinary people to the great depression? How did people respond? Did different classes (upper, middle, lower), racial groups, age groups, or men vs. women respond differently? There are certainly advantages to McElvaine’s use of letters in his account of the United States during the Great Depression compared to using oral histories or indeed using the reports of New Deal Investigators. Oral histories are not always accurate if they are recounted years or even decades after the events they describe. People may not always remember things accurately, or they might get details muddled up. On the other hand reports by New Deal reporters may not always be considered to be reliable, as with any organization set up by a government they could have presented a more positive light on events. Such inaccuracies would have been to demonstrate that the New Deal was successfully countering the worst affects of the Great Depression. People of different social, economic, and racial groups wrote the letters as the Great Depression had an impact on all sections of American society. Whilst previous economic recessions had hit the poorest the hardest, the Great Depressi on was unprecedented in scale and severity with up to 30 million people affected. President Hoover’s attempts to restore confidence in the economy failed whilst measures to alleviate poverty and unemployment proved wholly inadequate. 2 The Great Depression hit agriculture and industrial workers hard, the collapse of banks affected everybody. The agricultural sector was particularly affected by

Friday, November 15, 2019

Conventional Sensors and Optical Fiber Sensors

Conventional Sensors and Optical Fiber Sensors ABSTRACT This study deals with the comparison of the two types of sensors which are widely used in civil engineering, namely, conventional sensors and optical fiber sensors. Temperature and displacement are the two principal parameters which are measured with the aid of Fiber optic sensors. Bragg Grating, Interferometric, Intensity Sensors, and optical time domain reflectometry (OTDR) are some of the techniques which are used for sensing. In this study, various case studies have been undertaken and have been analyzed. With the aid of these case studies, a detailed analysis and comparison of the sensors is carried out. Chapter 1: INTRODUCTION In the last two decades, the world has witnessed a revolution in the sectors of optoelectronics and fiber optic communications. Various products such as laser printers and bar code scanners which have become a part of our daily usage, are a result of this technical revolution only. The reasons for the phenomenal growth of the fiber optics are many. The most conspicuous reason being the ability of the fiber optics to provide high performance and highly reliable communication links and that too at a very low bandwidth cost. As we see that optoelectronic and fiber communications industry has progressed a lot, and along with these industries fiber optic sensors have also benefited a lot from these developments. Due to the mass production in these industries, availability of fiber optic sensors at a low cost has been made possible in recent years. With their availability at affordable costs, fiber optic sensors have been able to enter the domain which was otherwise being ruled by the trad itional sensors. In recent years, the demand for the development of new materials to strengthen, upgrade and retrofit existing aged and deteriorated concrete structures has increased rapidly. The continuing deterioration and functional deficiency of existing civil infrastructure elements represents one of the most significance challenges facing the worlds construction and civil engineers. Deficiencies in existing concrete structures caused by initial flawed design due to insufficient detailing at the time of construction, aggressive chemical attacks and ageing of structural elements enhance an urgent need of finding an effective means to improve the performance of these structures without additionally increasing the overall weight, maintenance cost and time. In the last 50 years, a large number of civil concrete structures have been built; many of these structures, particularly in off-shore regions have now deteriorated and require repair in a short period of time. Moreover, the increase of traffic volume and population in many developing countries is causing the demand to upgrade existing concrete structures to increase. The damage of reinforced concrete (RC) structures through reinforcement corrosion and residual capacity are the most important issues that concern engineers. These problems occur not only in constructed concrete structures but also in structures strengthened by externally bonded steel reinforcements. In the past, the external steel plate bonding method has been used to improve strength in the tensile region of concrete structures with an epoxy adhesive and has proved to be successful over a period of 20 years. However, the use of steel reinforced plates and bars has its disadvantages including high corrosion rates, which could adversely affect the bond strength and cause surface spalling of the concrete, due to volumetric change in the corroded steel reinforcements. Since the early 1980s, fibre-reinforced plastic (FRP) materials have been used as a replacement for conventional steel materials for concrete strengthening applications. In recent years, the interest in utilizing FRP materials in the civil concrete industry in forms of rods, plates, grid and jacket has grown increasingly. When an FRP plate with high tensile strength properties bonds on the concrete surface, it can strengthen the structure with minimum changes to its weight and dimensions. FRP offers substantial improvement in solving many practical problems that conventional materials cannot solve to provide a satisfactory service life of the structure. Unlike the conventional steel materials, FRP is corrosion resistant. The beneficial characteristics of using the FRP in concrete construction include its high strength-to-weight ratio, low labour requirement, ease of application, reduced traffic interruption during repair, cost reductions in both transportation and in situ maintenance for a long-term strategy. Its high damping characteristic also attracts more structural engineers to use these materials for seismic retrofitting. Due to the increasing use of FRP-plate bonding techniques in strengthening civil concrete structures, the interest in finding a suitable means of monitoring the structural health conditions of these strengthened structures has therefore increased substantially. Since strengthened structures are covered by the FRP plates, the mechani cal properties of the concrete may not be measured or detected easily through conventional nondestructive evaluation (NDE) methods, such as strain measurements using surface mounted strain gauges or extensometers, radiography, thermography and acoustic emission methods, particularly in areas with microcracks and debonds underneath the externally-bonded plate. Besides, these structural inspection technologies, in certain cases, require special surface preparations or a high degree of flatness in the concrete surface. These requirements may be hard to achieve, particularly for an area that is exposed to a harsh environment. During the 1990s, a multi-disciplinary field of engineering known as Smart Structures has developed as one of the most important research topics in the field.The structure is formed by a marriage of engineering materials with structurally-integrated sensor systems. The system is capable of assessing damage and warning of impending weakness in the structural integrity of the structure. Fibre-optic sensor technology is a most attractive device currently used in the aerospace and aircraft industry for on-line monitoring of large-scale FRP structures. The development of distributed fibreoptic sensors, which provides information on a large number of continuously distribution parameters such as strain and temperature is of great interest in most engineering applications.11,12 The sensors are embedded into a structure to form a novel self-strainmonitoring system, i.e. the system can self-detect its health status and send response signals to operators during any marginal situation during service. The embedding sensor, due to its extremely small physical size, can provide the information to a high accuracy and resolution without influencing the dimension and mechanical properties of the structure. Fibre-optic sensors present a number of advantages over the conventional strain measuring devices: (a) providing an absolute measurement that is sensitive to fluctuation in irradiance of the illuminating source; (b) enabling the measurement of the strain in different locations in only one single optical fibre by using multiplexing techniques;(c) having a low manufacturing cost for mass production; and (d) its ability to be embedded inside a structure without influencing the mechanical properties of the host material. A new development of Smart materials and structures was driven by a strong demand for high performance over recent years. A system integrated into structures and being able to monitor its hosts physical and mechanical properties such as temperature and strain, during service is appreciated as a Smart structural health monitoring system. The term smart material and structure is widely used to describe the unique marriage of material and structural engineering by using fibre-optic sensors and actuation control technology. The smart structure is constructed of materials that can continuously monitor their own mechanical and physical properties, and thereby, be capable of assessing damage and warning of impending weakness in structural integrity. This design concept results in improved safety and economic concerns regarding the weight saving and avoidance of over-designing of the structure in the long run. In Fig. 1, a schematic illustration of the structures possibilities created by the confluence of the four disciplines is shown. In the figure, a structure invested with actuating, sensing and neutral networking systems to form a new class of adaptive structures is shown. A structure with integrated sensor or actuator systems is able to provide a self-structural health monitoring or actuating response, respectively. If both systems are integrated together into a structure, the sensor and actuators can act as nervous and muscular systems, like a human body, to sense the conditions such as mechanical strain and temperature of the structure (a smart structure) and to provide control of such changes of stiffness, shape and vibration mode (a controlled structure). The combination of these two systems into one structure is called a Smart adaptive structure. This structure with a built-in neural networking system, like a brain, is then able to self evaluate the conditions, which are based on changes of structural parameters, thermal conditions and ambient environments to give an appropriate mechanical adjustment. This structure is commonly called an Intelligent adaptive structure. 1.1 BACKGROUND OF THE STUDY There has been an unprecedented development in the fields of optoelectronics and fiber optic communications. This in turn, has brought about a revolution in the sectors of telecommunication and various other industries. This has been made possible with the aid of high performance and reliable telecommunication links which have low bandwidth cost. Optical fibers have numerous advantages and some disadvantages. The advantages include their small size, resistance to electromagnetic interference and high sensitivity. On the other hand, some of its disadvantages are their high cost and unfamiliarity to the end user. But its great advantages completely overshadow its minor disadvantages. So, in this study an attempt is being made to compare the modern age fiber optic sensors with the conventional sensors. Also, with the aid of the case studies, the impact of fiber optic sensor technology on monitoring of civil structures is studied (McKinley and Boswell 2002). 1.2 PROBLEM STATEMENT In the past various kinds of sensors have been used in civil engineering for measuring temperature, pressure, stress, strain etc. And as the optical fiber sensors spread their wings, the civil engineering is bound to gain a lot from these modern sensors. Presently, there exist a number of problems with the existing civil infrastructures. These civil infrastructures such as bridges etc. have a pretty long service period which may amount to several decades or maybe even hundred years. Thus, during this time period, these structures suffer from corrosion, fatigue and extreme loading. Since concrete is used mostly in these civil infrastructures, it degradation is a major issue all over the world. The amount of degradation and the time when the degradation starts depends on various factors and is inevitable and unavoidable. Thus, in order to keep these civil structures in good condition, it becomes necessary that their condition be monitored and adequate steps be taken. Thus, we need sensors which can monitor these structures throughout the life of these structures. Thus, in this study the impact of fiber optic sensors is studied on civil structures. 1.3 OBJECTIVES There are a few objectives that are planned to be achieved at the end of this project, these are: A general discussion on the present state of structural monitoring and the need of fiber optic sensors in this field A general study on Comparison between Conventional Sensors and Optical Fiber Sensors Review of Case Studies on Fiber Optic Sensors application in Civil Engineering Structures 1.4 WORK PLAN Discussion, reading and observation Problem identification through reading, discussion and observation of the area studied Understand and identify the background of problem Studying feasibility and needs to carry out the investigation Identification of the Title for the project Identify the aim, objective and scope of the project Literature Review Understanding the background of the problem Understanding the history of the sensor technology in structural monitoring Carrying out literature survey on generic technologies of sensors for concrete structures Identify the types of sensor involved in monitoring the structural in civil engineering Identify the technique used and the working principle for each type of sensors (in particular optical fiber sensors) Case Study Choose the relevant and related case study for discussion Describe important aspects of case study Analyze the use of sensors in the case study Discussion, Conclusion and Recommendations Discuss the similarities and differences Discuss the technical facets of sensor application Draw the overall conclusion for this project Give some recommendation for future Chapter 2: APPLICATIONS These days the fiber optic sensors are being used for a variety of applications, the most prominent of them being: Measurement of rotation and acceleration of bodies Measurement of electric and magnetic fields Measurement of temperature and pressure of bodies Measurement of acoustics and vibrations of various bodies Measurement of strain, viscosity and chemical properties of materials Measurement of surface condition and tactile sensing Measurement of sound , speed and proximity of bodies Determination of color and weight of different objects Measurement of linear and angular positions and this is widely utilized in civil engineering structures 2.1 ADVANTAGES OF FIBER OPTIC SENSORS Like with any other technology, there are both advantages and disadvantages using fiber optic sensors. The prominent advantages being: Fiber optic sensors are lightweight and this is of great importance in case of engineered structures Fiber optic sensors are of smaller size as compared to the traditional sensors Also, fiber optic sensors consume less power as compared to the traditional sensors Along with this, these sensors show high resistance to electromagnetic interference as compared to the traditional sensors On top of this, fiber optic sensors have enjoy high bandwidth and high sensitivity as compared to their traditional counterparts Fiber optic sensors are usually embedded in objects and due to this, these sensors can gain access to areas which till date remain inaccessible with the aid of traditional sensors Also, these sensors are accurate over a greater dynamic range as compared to the traditional sensors Fiber optic sensors are also capable of being multiplexed which again is a further advantage over their traditional counterparts Also, fiber optic sensors are capable of distributed measurements which gives them an edge over and above the traditional sensors Last but not the least, they also show greater environmental ruggedness as compared to the traditional sensors 2.2 DISADVANTAGES OF FIBER OPTIC SENSORS But all this is just one side of the coin. Though on seeing these advantages, it might appear that fiber optic sensors are way too advanced as compared to the traditional ones, but it is not exactly true. These fiber optic sensors also have some disadvantages due to which their advancement in todays world has been somewhat curtailed. The major disadvantages of fiber optic sensors are: Fiber optic sensors are quite costly as compared to the traditional sensors. Due to this, many people still consider traditional sensors to be a better option in cases where cost is a major consideration. Secondly, these sensors have come into prominence only in the last two decades. Due to this, people appear to be somewhat less educated regarding their usage and operations. And this unfamiliarity with the usage of these sensors, has proved to be a major hurdle in being able to capture the whole market. Also, these sensors are considered to be more fragile as compared to the traditional sensors which raises a question over their adaptability in extreme conditions Also with the fiber optic sensors there exists the inherit ingress/egress difficulty Fiber optic sensors usually have a non-linear output which is a cause for concern in some applications From the above discussion, we can see that as is the case with any other new technology, there are both merits and demerits of fiber optic sensors. But, what is worth considering here is that the advantages of this technology are much more than its disadvantages and are able to outweigh them. Also, from the demerits which are mentioned here, it is clear that these demerits are bound to wither away as this technology develops and gains more prominence. 2.3 APPLICATIONS IN CIVIL ENGINEERING Now we come to the discussion of the need and applications of the fiber optic sensors in the field of civil engineering structures. The monitoring of civil structures has a great significance in todays world. Today, we not only need to construct reliable and strong civil structures, but we also need to monitor these structures in order to ensure their proper functioning and their safety. Also, with the aid of the monitoring of various parameters of the structures, we can get knowledge about state of the building and by using this data, we can in turn plan the maintenance schedule for the structure (Mckinley, 2000). Also, this data can give us an insight into the real behavior of the structure and can thus take make important decisions regarding the optimization of similar structures which are to b e constructed in future. The maintenance of the structures can be approached in one of the two ways, namely: Material point of view- In this approach, monitoring is concentrated on local properties of the materials which are used in the construction. In this approach, we observe the behavior of the construction materials under the conditions of load, temperature etc. In this approach, short base length sensors are usually utilized. Also, it is possible to get the information about the whole structure with the aid of extrapolation of the data obtained from these sensors. Structural point of view- In this approach of measurement, the structure is viewed from a geometrical point of view. In this approach, long gauge length sensors appear to be the ideal choice. In this approach, we will be able to detect material degradation only if this material degradation has an impact on the form of the structure. In the recent years most of the research work which has been carried out in field of optic sensors has been in the field of material monitoring rather than structural monitoring. It is also worth mentioning here that, more sensors are required in the case of material monitoring as compared to structural monitoring. We know that civil engineering requires sensors that can be embedded in the concrete, mortars, steel, rocks, soil, road pavements etc. and can measure various parameters reliably. Also what should be taken into account is that these sensors should be easy to install and should not hamper the construction work or the properties of the structure in any derogatory manner. Also, it is common knowledge that at the sites of civil engineering, there exist the unavoidable conditions of dust, pollution, electromagnetic disturbances and of unskilled labor. Thus, the sensors to be used in these cases need to be rugged, should be inert to harsh environment conditions and should be easy to install and their installation could be carried out by unskilled labor. Along with all these things, it is imperative that these sensors are able to survive a period of at least ten years so that they can allow for a constant monitoring of the aging of the structure. Thus, we see that the fiber optic sensors ca n prove to be quite handful in civil engineering applications and structures. In the past various kinds of sensors have been used in civil engineering for measuring temperature, pressure, stress, strain etc. And as the optical fiber sensors spread their wings, the civil engineering is bound to gain a lot from these modern sensors (Vurpillot et al., 1998). Chapter 3: LITERATURE REVIEW ON FIBER OPTIC SENSORS Fiber optic sensors are of many kinds, but they can be broadly classified into two types, namely, extrinsic fiber optic sensors and intrinsic fiber optic sensors. There is a great deal of difference between these two types of fiber optic sensors and this difference is discussed in detail below. 3.1 EXTRINSIC FIBER OPTIC SENSORS This type of fiber optic sensor is also known as hybrid fiber optic sensor. As we can see in the figure above that there is a black box and an input fiber enters into this black box. And from this input fiber, information is impressed upon light beam. There can be various ways by which the information can be impressed upon. Usually this information is impressed upon the light beam in terms of frequency or polarization. This light which then posses the information is carried away by the optical fiber. The optical fiber now goes to an electronic processor. (Vurpillot et al., 1998) Here, in the electronic processor the information which is brought along by the fiber is processed. Though we can have separate input fiber and output fiber, but in some cases it is preferred to have the same fiber as the input fiber and the output fiber. 3.2 INTRINSIC FIBER OPTIC SENSORS Intrinsic fiber optic sensors Extrinsic fiber optic sensors In this sensor, the fiber itself acts as the sensor medium In this sensor, the fiber does not act as the sensor medium. It merely acts as a light delivery and collection system In this fiber optic sensor, the light never leaves the medium and always stays inside the medium In this fiber optic sensor, the light leaves the medium, then it is altered in some way and is collected by another fiber. 3.3 INTENSITY BASED FIBER OPTIC SENSORS While there exist various kinds of fiber optic sensors today, but the most common of these sensors is the hybrid type fiber optic sensor which depends upon intensity modulation in order to carry out the measurements (Zako et al., 1995) The functioning of this fiber optic sensor is quite simple. In this fiber optic sensor, light enters from one side. And when this light exits from the other side, it exits in the form of a cone and the angle of this cone depends on two parameters. The two parameters upon which the angle of this cone depends are: Firstly, it depends on the index of refraction of the core Secondly, it depends on the cladding of the optical fiber Also, the amount of light captured by the second optic fiber depends on a number of factors. The prominent factors on which the amount of light captured depend are: It depends on the acceptance angle It also depends on the distance d between the optical fibers Another type of fiber optic sensor is the flexible mounted mirror sensor. The important characteristics of this sensor are: In this case, a mirror is mounted which is used to respond to external parameters such as pressure. The modulation in intensity is caused the shifts in the mirror position. These sensors are used in a variety of applications such as door closures. In a door closure, a reflective strip is used. These sensors are used to measure small variations and displacements 3.4 LINEAR POSITION SENSORS In todays world, linear position sensors have become widely applicable. They are being used for various purposes (Zako et al., 1995). In many of the linear positioning sensors, wavelength division multiplexing is used. An illustration of the linear position sensor is shown in the figure below. The various components of this linear position sensor are: It consists of a broadband light source It consists of various detectors as shown in the figure above It also consists of wavelength division multiplexing element which acts as the principal component of this instrument. It also consists of an encoder card In the example above, a broadband light source is utilized. The light from this broadband source is carried to a wavelength division multiplexing system with the aid of a single optic fiber. The wavelength division multiplexing system is used to determine the linear position. Another linear motion sensing method which is very widely used today and is quite similar to the method discussed above is known as the time division multiplexing method. In this method instead of a broadband light source a light pulse is used. Here, the combination of the returned signals takes place. As a result of this combination of the returned signals, the net signal which is produced moves onto the position of the encoder card. The main areas in which these intensity based fiber optic sensors have found application are: In commercial aircrafts In military aircrafts In these applications these modern sensors have performed quite well and are at par with the performance of the conventional sensors. But, because of the various advantages these sensors enjoy over and above the conventional sensors, these modern sensors are bound to replace the conventional sensors in the years to come. 3.5 LIQUID LEVEL SENSORS This is another type of intensity based fiber optic sensor. In the functioning of this sensor, the principle of total internal reflection is utilized. Thus, in these sensors the refraction index of the glass and the fiber occupy the pivotal role. These sensors can be utilized for a variety of purposes. The most prominent of its applications are: Measurement of pressure changes in gels Measurement of pressure changes in various liquids Measurement of refractive index changes in gels Measurement of refractive index changes in different types of liquids Measurement of the level of a liquid in a vessel and this application is utilized in various industries to measure liquid levels These sensors have an accuracy of about 5 percent and are gaining importance in various industries for their usefulness. 3.6 SOFO SENSORS These are fiber optic sensors which are utilized for strain measurement. These sensors have become quite popular owing to their innate merits. Out of all the fiber optic sensors, these sensors are the ones which are being used most extensively today. These sensors are being used to measure curvature and various other parameters in giant civil structures. These sensors form a part of the interferometric system (Vurpillot et al., 1998). Also, these sensors have the ability of measuring the parameters in an absolute manner using low-coherent light. The important properties of these sensors are: These fiber optic sensors enjoy a high resolution. The resolution of these sensors is 2 Â µm These sensors can be of varied lengths. Their length can be as small as 0.2m or can be as large as 20m. Also, these sensors have the property of being temperature compensated The SOFO system setup consists of a number of equipments. The main components of the SOFO system setup are: It consists of a fiber optic sensor which forms the crux of this monitoring system. It is the most important component of the monitoring system. It consists of a sensor chain with partial reflectors. One terminal of this sensor is connected to the coupler Another terminal of the sensor chain with partial reflectors is connected to the LED. The coupler in turn is connected to the photo diode and a mobile mirror. This whole portable reading unit is connected to portable computer terminal. This ensures that that the whole monitoring system can be taken to the location and can be directly used at site. These sensors can be utilized in two ways. They can either be embedded in the structure at the time of the construction of the structure. Or, they can used to measure the various parameters externally. Though in both the cases, that is, in case of embedding or in the case of external anchoring, the performance of the sensors remains the same, but still, in modern smart structures, embedding is preferred (Perez 2001). .This is because, in the case of embedded sensors, the sensors continuously measure the parameters and are easy to manage. Whereas in the older structures, where embedding is not preferred, external anchoring is used. Chapter 4: CASE STUDIES Case study 1: Monitoring of San Giorgio pier San Giorgio pier is a massive concrete structure. Its length is about 400metres. It is very essential to carry out its monitoring in order to know about its deformation. This in turn, is very useful in determining the safety of this pier. At this pier, it was earlier proposed to use the conventional methods to monitor the deformation. This involved the use of conventional sensors for measurement. But, the problem with this method was that in the case of conventional sensors, we could get the data of the various parameters of the pier for only a short period. And, as we know that in order to determine anything conclusively about such large concrete structures we need data for a very long period. But, here as it was the case with the conventional sensors, we could get data only for short periods. Thus, with the aid of the conventional methods which were employing conventional sensors, we could not say anything conclusively. (Andrea Del Grosso et al.) Thus, there existed the need to emp loy fiber optic sensors in order to determine the deformation of this massive pier. It was possible to measure the deformation of this pier with the aid of the fiber optic sensors because of the following advantages which the fiber optic sensors enjoy over and above the conventional sensors: Fiber optic sensors are long base strain sensors and this property of the fiber optic sensors was very important in this case. This was because, as the pier was a massive concrete structure, therefore, measurement of

Wednesday, November 13, 2019

Emily Dickinsons The Goal :: essays research papers

Emily Dickinson's "The Goal" discusses her theory that each human being lives each day striving to obtain one specific goal. She theorizes that each individual longs to fulfill one specific achievement whether "expressed" to others or is "still" (l. 2) and locked into the individual's heart. Dickinson says that it is an inevitable part of human nature to live this way, whether we believe so or not, and have not been able to recognize the specific theme of our life as it is "admitted scarcely to itself" (l. 5). She speculates that we attempt to cover our ambitions from others because we lack "credibility's temerity" (l. 7) and are scared that we are less accomplished than we should be to even imagine so great of expectations. She also brings out that not only are we wary of sharing our dream to others, but we ourselves approach it "adored with caution" (l. 9). Even though we ourselves doubt our ability to achieve the extent of our dream, Dickinson says that the further away and the less attainable, the more desirable of an objective it becomes. She says that we chase after our goal like someone chasing after "the rainbow's raiment" (l. 11) which we continue to pursue for its beauty and the pot of gold, even though we know that it is only an appealing myth and the end of the rainbow does not truly exist at all. She compares our faith in achieving our goal as someone reaching "a brittle heaven" (l. 9) and living their lives in blind faith that they will ultimately achieve that goal. We all live our lives in part expecting to achieve utopia and to see the face of God at our death, but occasional we question the rationale of this heart's desire. We do however have to believe on the basis that without that belief, living a moral life and having a supernatural relationship would be ludicrous without that end reward of sitting at the feet of our maker. Likewise, we should live our lives with a mortal goal and faith that we will achieve it. If we approach our earthly desires in this manner, we will be more disciplined, and will seek to achieve this goal with all costs. Dickinson says that we should be inspired by "the saints' slow diligence" (l. 15) who have gone before us all working towards their goal of spreading the gospel and doing good works.